Researcher tests first-in-class compound for neuroprotection with hope of stopping MS disease progression
PUBLIC RELEASE DATE: 20-Nov-2013
Contact: Press Office
newsmedia@mssm.edu
212-241-9200
The Mount Sinai Hospital / Mount Sinai School of Medicine
Researcher tests first-in-class compound for neuroprotection with hope of stopping MS disease progression
Mount Sinai's Patrizia Casaccia, M.D., partners with Karyopharm Therapeutics to speed new drug development
A $500,000 drug development grant from the National Multiple Sclerosis Society (NMSS) was awarded to a partnership between a multiple sclerosis research team at the Icahn School of Medicine at Mount Sinai and Karyopharm Therapeutics Inc., a clinical stage pharmaceutical company. Dr. Patrizia Casaccia, MD, PhD, Professor in the Departments of Neuroscience and Genetics and Genomics, at Icahn School of Medicine at Mount Sinai, will be the academic lead. She will test the effectiveness of a novel Karyopharm compound that can be orally administered and aimed at stopping the progressive phase of the disease. With the 14-month grant, Dr. Casaccia also hopes to gather information that will help design future clinical trials for MS treatments.
Karyopharm specializes in the synthesis of Selective Inhibitors of Nuclear Export, also known as SINE compounds. These compounds are thought to prevent the cause of irreversible damage to neurons, by blocking the early stages of neurodegeneration. Dr. Casaccia's laboratory first identified nuclear export as an important mechanism related to the initial events occurring in neurons and eventually leading to neurodegeneration. As inhibitors, these novel compounds target the nucleus in neurons, and block the accumulation of toxic substances in the axons. Axons are coated with myelin, and they can be damaged because myelin is destroyed or because they can be directly attacked by toxic factors that accumulate during the MS disease process. Neurodegenerative symptoms result from loss of myelin. Electrical signals are transmitted from the cell body of the neuron down an axon to other nerve cells, muscles, and other cells. Signal transmission slows down and progressive disability results from damage to the axons and loss of neurons, due to neurodegeneration.
Dr. Casaccia underscored the new strategy in MS drug development. "What's unique about this work is that SINE compounds target and prevent nuclear export, which is critically important for the neurodegenerative phase of the disease," she said. Preliminary experiments in Dr. Casaccia's laboratory have been encouraging. In mouse models, oral administration of the new compound to mice with paralysis of the tail and hindlimb, allowed them to walk again.
"The idea of rebuilding the nervous system and protecting it from ongoing MS damage was just a dream a few years ago," said Timothy Coetzee, Chief Advocacy, Services and Research Officer at the National MS Society. "Now, because of efforts by the research community as well as focused investments by the Society, we can see a future where people with MS will have treatments that could restore what's been lost."
In partnering with Karyopharm Therapeutics Inc., Dr. Casaccia will test these oral compounds in preclinical models and unravel their mechanism of action. The work would not be possible if the National MS Society did not invest $500,000 with Karyopharm through Fast Forward, as part of a comprehensive approach to MS research and treatment focusing on accelerating commercial development of promising research discoveries.,
"We look forward to collaborating with Dr. Casaccia, who has dedicated herself to advancing research in multiple sclerosis and other important diseases," said Karyopharm Founder, Chief Scientific Officer, and President of Research and Development, Sharon Shacham, PhD, MBA.
Fred Lublin, MD, Saunders Family Professor of Neurology and the Director of the Corinne Goldsmith Dickinson Center for Multiple Sclerosis at Mount Sinai Medical Center also applauded this research. "Developing novel approaches to treating the neurodegenerative component of MS is critically important for our efforts at halting this disease and then reversing the damage. Existing medications for MS only aim to reduce the number of relapses. They are not restorative to the nervous system."
###
About the Mount Sinai Health System
The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services—from community-based facilities to tertiary and quaternary care.
The System includes approximately 6,600 primary and specialty care physicians, 12-minority-owned free-standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.
For more information, visit Mount Sinai on the web, Facebook, Twitter or YouTube.